of this type would change the value of the transit time between two consecutive echoes by \pm 0.10 µsec which would be easily located when settings are made to \pm 0.01 µsec. If the same error in choosing corresponding cycles was made between every echo the mistake would be concealed; therefore a buffer quartz measurement^{*} was made on each transit time to eliminate any systematic effect of this type.

*If a rod of fused quartz is inserted between the transducer and the specimen, the reflection from the silver-air interface is identical, except for amplitude, to the reflection from the quartzsilver interface and corresponding cycles may be chosen with confidence. This method yields a true transit time of sufficient precision to detect an error as large as 0.10 µsec.

The acoustic wave velocities ν were then computed from the length L and transit time T using $\nu = \frac{2L}{T}$. The density of silver as a function of temperature was calculated by taking the lattice constant as 4.0861Å at 25°C, the atomic weight as 107.880, Avagadro's number as 0.602305 x 10²⁴, and β for silver as 57 x 10⁻⁶ (°C)⁻¹. The values of the $\rho\nu^{-2}$ were calculated using the appropriate value of density for the temperature at which the measurements were made and then corrected by small amounts to 27°C using data for $\frac{dC}{dP}$ from Neighbours and Alers².

- 10 -